This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at T = 283.15 and 298.15 K

B. González^a; E. J. González^a; I. Domínguez^a; A. Domínguez^a ^a Departamento de Ingeniería, Química de la Universidad de Vigo, 36310 Vigo, Spain

Online publication date: 14 July 2010

To cite this Article González, B., González, E. J., Domínguez, I. and Domínguez, A.(2010) 'Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at T = 283.15 and 298.15 K', Physics and Chemistry of Liquids, 48: 4, 514 – 533

To link to this Article: DOI: 10.1080/00319100903161499 URL: http://dx.doi.org/10.1080/00319100903161499

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Excess properties of binary mixtures hexane, heptane, octane and nonane with benzene, toluene and ethylbenzene at T = 283.15 and 298.15 K

B. González, E.J. González, I. Domínguez and A. Domínguez*

Departamento de Ingeniería, Química de la Universidad de Vigo, 36310 Vigo, Spain

(Received 5 June 2009; final version received 5 July 2009)

Densities, speeds of sound and the refractive indices of binary systems containing alkanes (hexane, heptane, octane and nonane) with aromatic compounds (benzene, toluene and ethylbenzene) at T=283.15 and 298.15 K under atmospheric pressure were determined over the whole composition range. From the experimental results, the derived and excess properties (excess molar volumes, isentropic compressibility, excess molar isentropic compressibility and refractive index deviations) at T=283.15 and 298.15 K were calculated and satisfactorily fitted to the Redlich–Kister equation.

Keywords: density; refractive index; speed of sound; alkanes; aromatic compounds; physical properties

1. Introduction

Aromatic hydrocarbons are very important to the petrochemical industry. Among these are benzene, toluene, ethylbenzene, and xylenes, which are basic raw material for the production of a number of important petrochemicals. Extraction of aromatics from refinery products such us naphtha, kerosene, and fuels jets by liquid–liquid extraction (LLE) has a potential of commercial importance in the oil refining industry. The information about the physical properties of pure liquids and liquid mixtures containing aromatic and aliphatic compounds, and their dependence on composition and temperature are very important basic data for their use in the extraction separation.

The binary systems containing alkanes with aromatic compounds are available in the literature [1–19], above all at T=298.15 K, but experimental data at T=283.15 K [4] are very scarce. The studies in the literature are usually focused on density and excess molar volume. In this article, as the extension of our work concerning to the study of the behaviour of alkanes and aromatics compounds [19,20], the experimental density, speed of sound and refractive index at T=283.15 K and 298.15 K under the atmospheric pressure of binary systems containing alkanes (hexane, heptane, octane and nonane) with aromatic compounds (benzene, toluene and ethylbenzene) were determined. The results were used to calculate excess molar

^{*}Corresponding author. Email: admguez@uvigo.es

volumes, isentropic compressibility, excess molar isentropic compressibility and refractive index deviations.

2. Experimental

2.1. Chemicals

Hexane, heptane, octane and nonane were supplied by Fluka with purity higher than 99.0%, 99.5%, 99.5% and 99.0%, respectively. Benzene, toluene and ethylbenzene were supplied by Sigma-Aldrich with purity higher than 99.8% for all of them. They were degassed ultrasonically and dried over molecular sieves type 4Å, supplied by Aldrich and kept in an inert argon atmosphere. Table 1 shows a comparison of experimental and literature data of pure components at T = 298.15 K.

2.2. Apparatus and procedure

Samples were prepared by syringing known masses of the pure liquids into stoppered bottles. For weight measurements, a Mettler AX-205 Delta Range balance with a precision of $\pm 10^{-5}$ g was used. Good mixing was ensured by magnetic stirring. All samples were prepared immediately prior to measurements to avoid variations in the composition due to the evaporation of the components.

Densities and speeds of sound were measured using an Anton Paar DSA-48 digital vibrating-tube densimeter. The uncertainty in experimental measurements has been found to be lower than $\pm 10^{-4}$ g cm⁻³ for the density and ± 1 m s⁻¹ for the speed of sound. The apparatus was calibrated by air and water, according to the manual instructions. The calibration was checked with the pure liquids shown in Table 1.

	ho(g	cm^{-3})	$C_{p,i}^*(\text{J mol}^{-1} \text{ K}^{-1})$	$\alpha_{p,i}^*(\mathrm{K}^{-1})$
Component	Exp.	Lit.	Lit.	Lit.
Hexane	0.6552	${0.65484^{\rm a}\atop 0.65516^{\rm b}}$	192.63 ^d	0.00138 ^d
Heptane	0.6796	0.67946 ^a 0.6796 ^c	230.42 ^d	0.00126 ^d
Octane	0.6986	0.69862 ^a	254.69 ^d	0.00111 ^d
Nonane	0.7140	0.71375 ^a 0.7140 ^c	282.61 ^d	0.00107 ^d
Benzene	0.8736	0.87360 ^a	137.86 ^d	0.00114 ^d
Toluene	0.8622	0.86219 ^a	157.48 ^d	0.00108 ^d
Ethylbenzene	0.8625	$0.86253^{\rm a}$	183.58 ^d	0.00100 ^d

Table 1. Comparison of experimental density of pure component data with literature values at T = 298.15 K and literature data of heat capacity, $C_{p,i}^*$, and isobaric expansibility, $\alpha_{p,i}^*$ at T = 298.15 K.

Note: ^aFrom reference [21], ^breference [3], ^creference [22], ^dreference [23].

To measure the refractive indices of pure components and their mixtures, an automatic refractometer (Abbemat-HP, Dr. Kernchen) with an uncertainty in the experimental measurements of $\pm 4 \times 10^{-5}$ was used.

3. Results and discussion

The experimental data of density, ρ , speed of sound, u, refractive index, n_D , isentropic compressibility, $K_{S,m}$, excess molar volume, V_m^E , excess molar isentropic compressibility, $K_{S,m}^E$, and refractive index deviation, Δn_D , for the binary systems (hexane (1), heptane (1), octane (1) or nonane (1) with benzene (2), toluene (2) or ethylbenzene (2)) at T=283.15 and 298.15 K under atmospheric pressure are reported in the Appendix. The excess molar volumes and refractive index deviations were calculated by the following equations:

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{N} x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(1)

$$\Delta n_{\rm D} = n_{\rm D} - \sum_{i}^{N} x_i n_{{\rm D},i}, \qquad (2)$$

where ρ and ρ_i are the density of the mixture and the density of the pure components, respectively; x_i represents the mole fraction of the component *i*, and n_D and $n_{D,i}$ are the refractive index of the mixture and the pure component, respectively.

The speed of sound, u, is related to the isentropic compressibility, κ_s , by Laplace equation:

$$\kappa_{\rm s} = -V_{\rm m}^{-1} (\partial V_{\rm m}/\partial p)_{\rm S} = \rho^{-1} u^{-2} = V_{\rm m}/(M_{\rm m} u^2)$$
(3)

where, $V_{\rm m}$ is the molar volume, and $M_{\rm m}$ is the molar mass of the mixture and the pure components.

To achieve agreement with the other thermodynamic quantities, it is appropriate to shift from the volume-intensive κ_s to the mole-intensive quantity K_{S,m} [24,25]:

$$\mathbf{K}_{\mathbf{S},\mathbf{m}} = -(\partial V_{\mathbf{m}}/\partial p)_{\mathbf{S}} = V_{\mathbf{m}}\kappa_{\mathbf{s}} = V_{\mathbf{m}}^{2}/(M_{\mathbf{m}}u^{2}), \tag{4}$$

where $K_{S,m}$ is the molar isentropic compressibility.

Experimental values for the speed of sound are reported in the Appendix, together with the derived values of isentropic compressibility and their excess, $K_{S,m}^E$. The excess molar isentropic compressibility, $K_{S,m}^E$, is calculated by the following equation:

$$K_{\rm S,m}^{\rm E} = K_{\rm S,m} - K_{\rm S,m}^{\rm id},$$
 (5)

where $K_{\rm S,m}^{\rm id}$ is defined by the approach developed by Benson and Kiyohara [26]:

$$K_{\rm S,m}^{\rm id} = \sum_{i} x_{i} \left[K_{\rm S,i}^{*} + T \frac{\left(E_{p,i}^{*}\right)^{2}}{C_{p,i}^{*}} \right] - T \left[\frac{\left(\sum_{i} x_{i} E_{p,i}^{*}\right)^{2}}{\sum_{i} x_{i} C_{p,i}^{*}} \right],\tag{6}$$

where $K_{\mathrm{S},i}^*$ is the product of the molar volume, V_i^* , and the isentropic compressibility, $\kappa_{\mathrm{S},i}^*$, of the pure component *i*. The molar isobaric expansion of pure component *i*, $E_{p,i}^*$, is the product of the molar volume and the isobaric expansibility $\alpha_{p,i}^*$ ($\alpha_{p,i}^* = -\frac{1}{\rho} (\frac{\partial \rho}{\partial T})_P$), and $C_{p,i}^*$ is the molar isobaric heat capacity of the pure component *i*. The values of $\alpha_{p,i}^*$ and $C_{p,i}^*$ were taken from literature [23] and these values are shown in Table 1 at $T = 298.15 \,\mathrm{K}$.

The excess and deviation properties at the studied temperatures were fitted to a Redlich–Kister-type [27] equation:

$$\Delta Q_{12} = x_1 x_2 \sum_{p=0}^{M} B_p (x_1 - x_2)^p, \tag{7}$$

where ΔQ_{12} is the excess property, x_1 and x_2 are the mole fraction of components 1 and 2, respectively, B_p is the fitting parameter and M is the degree of the polynomic expansion. The fitting parameters are given in Tables 2 and 3 together with the root-mean-square deviations, σ , given by:

$$\sigma = \left\{ \sum_{i}^{n_{\text{dat}}} \left(z_{\text{exp}} - z_{\text{calc}} \right)^2 / n_{\text{dat}} \right\}^{1/2}$$
(8)

where z_{exp} , z_{calc} and n_{dat} , are the values of the experimental and calculated property and the number of experimental data, respectively.

Figures 1–3 show the fitted curves of the excess molar volumes, the refractive index deviation and the excess molar isentropic compressibility, respectively, of the studied binary systems containing alkanes (1) with aromatic compounds (2) at T = 283.15 and 298.15 K.

Figure 1(a)–(c) shows the excess molar volume for alkanes with benzene, toluene and ethylbenzene, respectively, at T=283.15. Most parts of the systems present a similar behaviour for this physical property. As can be observed in this figure, excess molar volumes are positive over the entire composition range for all the investigated mixtures with a maximum between $x_1=0.4$ and $x_1=0.5$, except for the hexane (1) + toluene (2) and hexane (1) + ethylbenzene (2) binary systems which present a minimum about $x_1=0.5$. For all the studied systems containing lineal alkanes, when the aliphatic chain of the alkane increases the excess molar volume increases, and when the aliphatic chain and the methyl radical of the aromatic compounds increases, this excess property decreases. For comparison purposes the experimental data from Letcher [4] at T=283.15 K are also presented in Figure 1(a).

Figure 2 shows the refractive index deviations for the studied systems over the entire composition range at T = 298.15 K. Figure 2(a)–(c) shows this deviation for alkanes with benzene, toluene and ethylbenzene, respectively. All studied systems present a similar behaviour for this physical property with small values of refractive index deviation. For this derived property, all systems present a minimum at approximately $x_1 = 0.4$ or $x_1 = 0.5$ and all they show is when the aliphatic chain of the alkane increases, the value of the refractive index deviation decreases. As in the excess molar volume case, for these systems, when the aliphatic chain and the methyl radical of the aromatic compounds increases, the refractive index decreases. The experimental data from Díaz *et al.* [14] at T = 298.15 K are also presented in Figure 2(c).

	B_0	B_1	B_2	B_3	σ
$ \frac{V^{\text{E}} (\text{cm}^{3} \text{ mol}^{-1})}{\Delta n_{\text{D}}} \\ \frac{K_{\text{S},\text{m}}^{\text{E}} (\text{m}^{3} \text{TPa}^{-1} \text{ mol}^{-1})}{K_{\text{S},\text{m}}^{\text{E}} (\text{m}^{3} \text{TPa}^{-1} \text{ mol}^{-1})} $	Hexar 1.6124 -0.0587 -0.0105	ne (1) + benzer 0.0884 0.0124 0.0036	ne (2) -0.0003		0.007 8×10^{-4} 5×10^{-5}
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Hepta 2.2477 -0.0069 0.0009	ne (1) + benze -0.4252 0.0203 0.0029	ene(2) 0.3172 -0.0065		$0.008 \\ 7 \times 10^{-4} \\ 3 \times 10^{-5}$
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Octar 2.8002 -0.0779 0.0082	$\begin{array}{c} \text{ne } (1) + \text{benzer} \\ -0.4938 \\ 0.0252 \\ 0.0020 \end{array}$	ne (2) 0.1721		$0.009 \\ 3 \times 10^{-4} \\ 2 \times 10^{-5}$
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Nonat 3.1975 -0.0801 0.0129	ne (1) + benze -0.7641 0.0325 -0.0009	ne (2) 0.1745 -0.0126	-0.0439	0.013 9×10^{-4} 5×10^{-5}
$V^{\rm E} (\rm cm^3 mol^{-1})$ $\Delta n_{\rm D}$ $K^{\rm E}_{\rm S,m} (\rm m^3 TPa^{-1} mol^{-1})$	Hexa: -0.2245 -0.0260 -0.0198	ne (1) + toluer 0.0394 0.0028 -0.0008	ne (2) -0.145		$0.003 \\ 1 \times 10^{-4} \\ 7 \times 10^{-5}$
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Hepta 0.5590 -0.0401 -0.0079	ne (1) + tolue -0.0906 0.0072 0.0012	ne (2)		$0.003 \\ 3 \times 10^{-5} \\ 2 \times 10^{-5}$
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{Sm} (m^{3} TPa^{-1} mol^{-1})$	Octar 0.8978 -0.0496 -0.0010	$\begin{array}{c} \text{ne (1) + toluer} \\ -0.2297 \\ 0.0104 \\ 0.0011 \end{array}$	ne (2)		$0.005 \\ 1 \times 10^{-4} \\ 2 \times 10^{-5}$
$V^{\rm E}$ (cm ³ mol ⁻¹) $\Delta n_{\rm D}$ $K^{\rm E}_{\rm Sm}$ (m ³ TPa ⁻¹ mol ⁻¹)	Nona 1.1611 -0.0547 0.0035	ne (1) + toluer -0.2859 0.0163 0.0005	ne (2)		$0.006 \\ 1 \times 10^{-4} \\ 3 \times 10^{-5}$
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{Sm} (m^{3} TPa^{-1} mol^{-1})$	Hexane -0.6034 -0.0061 -0.0245	(1) + ethylben -0.0216 0.0013 -0.0034	zene (2) -0.2833		$0.005 \\ 6 \times 10^{-5} \\ 6 \times 10^{-5}$
$V^{\text{E}} (\text{cm}^{3} \text{mol}^{-1})$ Δn_{D} $K^{\text{E}}_{\text{S,m}} (\text{m}^{3} \text{TPa}^{-1} \text{mol}^{-1})$	Heptane 0.2445 -0.0217 -0.0122	(1) + ethylber-0.06100.0021-0.0001	nzene (2) -0.1288		0.002 5×10^{-5} 4×10^{-5}
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Octane 0.6621 -0.0330 -0.0045	(1) + ethylben -0.2754 0.0044 0.0004	zene (2) -0.1255		0.004 8×10^{-5} 2×10^{-5}
$V^{E} (cm^{3} mol^{-1})$ Δn_{D} $K^{E}_{S,m} (m^{3} TPa^{-1} mol^{-1})$	Nonane 1.0278 -0.0396 0.0007	(1) + ethylben-0.19600.00830.0007	1zene (2) 0.0584		$0.004 \\ 1 \times 10^{-4} \\ 1 \times 10^{-7}$

Table 2. Fitting parameters and root mean square deviations (σ) for binary mixtures at T = 283.15 K.

	B_0	B_1	<i>B</i> ₂	σ
	Hexane (1)	+ benzene (2)		
$V^{\rm E}$ (cm ³ mol ⁻¹)	1.5461	0.0460		0.006
$\Delta n_{\rm D}$	-0.0580	0.0094		7×10^{-5}
$K_{\rm S,m}^{\rm E} \ ({\rm m}^3 {\rm TPa}^{-1} {\rm mol}^{-1})$	-0.0145	0.0047		5×10^{-5}
	Heptane (1)) + benzene(2)		
$V^{\rm E}$ (cm ³ mol ⁻¹)	2.2425	-0.2342	0.4521	0.007
$\Delta n_{\rm D}$	-0.0695	0.0188		2×10^{-4}
$K_{\rm S,m}^{\rm E} ({\rm m}^3{\rm TPa}^{-1}{\rm mol}^{-1})$	0.0004	0.0015		2×10^{-5}
	Octane (1)	+ benzene (2)		
$V^{\rm E} ({\rm cm}^3{\rm mol}^{-1})$	2.7053	-0.5059	0.3533	0.008
$\Delta n_{\rm D}$	-0.0750	0.0250		2×10^{-4}
$K_{\mathrm{S,m}}^{\mathrm{E}} (\mathrm{m}^3 \mathrm{TPa}^{-1} \mathrm{mol}^{-1})$	0.0086	0.0018		5×10^{-5}
	Nonane (1)	+ benzene (2)		
$V^{\rm E}$ (cm ³ mol ⁻¹)	3.1026	-0.8180	0.3651	0.009
$\Delta n_{\rm D}$	-0.0773	0.0317	-0.0125	8×10^{-5}
$K_{\rm S.m}^{\rm E} ({\rm m}^3{\rm TPa}^{-1}{\rm mol}^{-1})$	0.0152	0.0002		5×10^{-5}
~ /	Hexane (1)	+ toluene (2)		
$V^{\rm E}$ (cm ³ mol ⁻¹)	-0.3702	0.0779		0.006
$\Delta n_{\rm D}$	-0.0258	0.0019		3×10^{-5}
$K_{\rm Sm}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)	-0.0262	0.0001		3×10^{-5}
5,	Hentane (1)	+ toluene (2)		
$V^{\rm E} ({\rm cm}^3 {\rm mol}^{-1})$	0.6397	0 0294		0.007
$\Delta n_{\rm D}$	-0.0392	0.0073		5×10^{-5}
$K_{\rm E}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)	-0.0103	0.0023		2×10^{-5}
5,111 (Octane (1)	\pm toluene (2)		
$V^{\rm E}$ (cm ³ mol ⁻¹)	0.9089	-0.1083		0.007
$\Lambda n_{\rm D}$	-0.0480	0.0116		8×10^{-5}
K_{c}^{E} (m ³ TPa ⁻¹ mol ⁻¹)	-0.0023	0.0017		5×10^{-5}
ins,m (in file inor)	Nerers (1)	(2)		0 / 10
$V^{\rm E}$ (cm ³ mol ⁻¹)	1 4157	+ toluelle (2)	0.0340	0.004
V (cm mor)	_0.0537	-0.2233	-0.0349	1×10^{-4}
$K_{\rm E}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)	0.0045	0.0100		4×10^{-5}
N _{S,m} (III II u III u)	U	(2)		17.10
V^{E} (cm ³ m c1 ⁻¹)	Hexane $(1) + 6$	0.0225		0.005
	-0.0372	0.0323		0.003
K^{E} (m ³ TPa ⁻¹ mol ⁻¹)	-0.0001 -0.0324	-0.0004		9×10^{-5}
$\mathbf{X}_{S,m}$ (III II a IIIOI)	-0.0324	-0.0042		J × 10
V^{E} (2003 - 1-1)	Heptane $(1) +$	ethylbenzene (2)	0 1 6 7 9	0.004
$V = (cm^2 mol^{-1})$	0.2768	-0.0749	-0.16/8	0.004
$\Delta h_{\rm D}$ $K^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)	-0.0210	0.0024		8×10 4×10^{-5}
$\mathbf{X}_{\mathrm{S,m}}$ (III IFa IIIOI)	-0.0101	0.0001		4 X 10
rE (3 $t-1$)	Octane $(1) + \epsilon$	ethylbenzene (2)		0.004
V^{-} (cm ² mol ⁻¹)	0.6889	-0.2639		0.004
$\Delta n_{\rm D}$ $K^{\rm E}$ (m ³ TPa ⁻¹ ma ¹⁻¹)	-0.0316	0.0049		4×10^{-5}
$\mathbf{A}_{S,m}$ (III I Fa IIIOI)	-0.00/0	0.0002		4 × 10
	Nonane $(1) +$	ethylbenzene (2)	0.40	
V^{L} (cm ³ mol ⁻¹)	1.1294	-0.0604	0.1578	0.006
$\Delta n_{\rm D}$	-0.0388	0.0077		8×10^{-5}
$K_{\tilde{S},m}$ (m ² I Pa ⁻¹ mol ⁻¹)	0.0005	0.0023		4×10^{-3}

Table 3. Fitting parameters and root mean square deviations (σ) for binary mixtures at T = 298.15 K.

Figure 1. Excess molar volumes, V^{E} , plotted against mole fraction for the binary mixture alkane (1) + aromatic (2) at T = 283.15 K for: (a) benzene, (b) toluene and (c) ethylbenzene. Experimental data: O hexane, Δ heptane, \Box octane, ∇ nonane. Literature data: \star heptane, + octane from Letcher *et al.* [4]. Solid line: Redlich–Kister fitting.

The excess molar isentropic compressibilities are plotted in Figure 3 over the entire composition range at T=283.15. Figure 3(a)-(c) shows the excess molar volume for alkanes with benzene, toluene and ethylbenzene. All studied systems present a behaviour very close to the ideality. As in the excess molar volume case, for all studied systems when the aliphatic chain of the alkane increases, the excess molar isentropic compressibility increases, but when the aliphatic chain and the methyl radical of the aromatic compounds increase this excess is more negative. The values of this property are negative for the binary systems hexane (1) + aromatic compounds (2), heptane (1) or octane (1) + toluene (2) and + ethylbenzene (2); partially negative for values lower than approximately $x_1 = 0.4$ for the system heptane (1) + benzene (2) and positive in the whole composition range for the other two systems (octane (1) + benzene (2) and nonane (1) + aromatic compounds (2)).

Figure 2. Refractive index deviations, Δn_D , plotted against mole fraction for the binary mixture alkane (1) + aromatic (2) at T = 298.15 K for: (a) benzene, (b) toluene and (c) ethylbenzene. Experimental data: \bigcirc hexane, \triangle heptane, \square octane, ∇ nonane. Literature data: \star heptane from Díaz *et al.* [14]. Solid line: Redlich–Kister fitting.

4. Conclusions

Densities, speeds of sound and refractive index of binary systems hexane (1), heptane (1), octane (1) and nonane (1) with benzene (2), toluene (2) and ethylbenzene (2) at T = 283.15 and 298.15 K under atmospheric pressure over the whole composition range are presented in this article.

From experimental data for all binary systems, the excess properties (excess molar volume, refractive index deviations and excess molar isentropic compressibilities) have been determined and these data have been fitted to Redlich–Kister equation to test the quality of the experimental values and very good results are obtained.

Excess molar volumes are positive over the entire composition range for all the studied mixtures except for the hexane (1)+toluene (2) and hexane (1)+ethylbenzene (2) at both studied temperatures. For the refractive index deviations, all systems present negative values at studied temperatures. In the study of the excess molar isentropic compressibilities, it can be observed that the binary systems with nonane and the mixture octane (1)+ benzene (2) present positive

Figure 3. Excess molar isentropic compressibility, $K_{S,m}^E$, plotted against mole fraction for the binary mixture alkane (1) + aromatic (2) at T = 283.15 K for: (a) benzene, (b) toluene and (c) ethylbenzene. Experimental data: \bigcirc hexane, \triangle heptane, \square octane, ∇ nonane. Solid line: Redlich–Kister fitting.

values, the system heptane (1) + benzene (2) has a sigmoid behaviour, while that of the other studied systems have a negative trend. All studied systems present the values of excess molar isentropic compressibilities very close to zero for both studied temperatures.

It is possible to say that when the aliphatic chain of the alkane is higher, the excess molar volume and the excess molar isentropic compressibilities increase, but the refractive index deviations decrease; and when the aliphatic chain of the aromatic compound increases, the excess molar volume and the refractive index deviation decreases, but the excess molar isentropic compressibilities increase.

With the experimental data obtained in this article and the experimental data obtained in previous work [19], it can conclude that the temperature has scarce influence on these studied excess.

Acknowledgement

The authors are grateful to the Ministerio de Educación y Ciencia (project CTQ2007-61272, Ramón y Cajal Program RYC-2008-02388 and FPI Fellowship BES-2008-003074).

References

- [1] Z.W. Moravkova and J. Linek, J. Chem. Thermodyn. 40, 607 (2008).
- [2] S.A. Beg, N.M. Tukur, D.K. Al-Harbi, and E.Z. Hamad, J. Chem. Eng. Data 40, 74 (1995).
- [3] A.M. Awwad, S.F. Al-Azzawi, and M.A. Salman, Fluid Phase Equilib. 31, 171 (1986).
- [4] T.M. Letcher, J. Chem. Thermodyn. 16, 805 (1984).
- [5] M.K. Kumaran and G.C. Benson, J. Chem. Thermodyn. 16, 599 (1984).
- [6] M. Caceres Alonso, J.L. Poveda Vilches, R.G. Sanchez-Pajares, and J. Nuñez Delgado, J. Chem. Thermodyn. 15, 913 (1983).
- [7] M. Takenaka, R. Tanaka, and S. Murakami, J. Chem. Thermodyn. 14, 399 (1982).
- [8] H. Iloukhani, M. Rezaei-Sameti, and J. Basiri-Parsa, J. Chem. Thermodyn. 38, 975 (2006).
- [9] H. Iloukhani, M. Rezaei-Sameti, and H.A. Zarei, Thermochim. Acta 438, 9 (2005).
- [10] V. Vyas and T. Pramana, J. Phys. 59, 663 (2002).
- [11] R. Bravo, M. Pintos, and A. Amigo, Phys. Chem. Liq. 24, 239 (1992).
- [12] R. Bravo, M. Pintos, and A. Amigo, J. Chem. Thermodyn. 23, 905 (1991).
- [13] I.M. Abdulagatov and N.D. Azizov, J. Therm. Anal. Cal. 87, 483 (2007).
- [14] C. Díaz, B. Orge, G. Marino, and J. Tojo, J. Chem. Thermodyn. 33, 1015 (2001).
- [15] C. Berro, F. Laïchoubl, and E. Rauzy, J. Chem. Eng. Data 36, 474 (1991).
- [16] A.M. Awwad, N.K. Al-Nidawy, M.A. Salman, and F.A. Hassan, Thermochim. Acta. 114, 337 (1987).
- [17] S. Freire, L. Segade, O. Cabeza, and E. Jimenez, J. Chem. Thermodyn. 39, 621 (2007).
- [18] A.F.A. Asfour and M.H. Siddique, J. Chem. Eng. Data 35, 192 (1990).
- [19] N. Calvar, B. González, E. Gómez, A. Domínguez, J. Chem. Thermodyn. 41, 939 (2009).
- [20] N. Calvar, B. González, E. Gómez, and J. Canosa, J. Chem. Eng. Data 54, 1334 (2009).
- [21] J.A. Riddick, W.B. Bunger, and T.K. Sakano, Organic Solvents (Wiley, New York, 1986).
- [22] Z.F. Wang, L.S. Wang, and T.B. Fan, J. Chem. Eng. Data 52, 1866 (2007).
- [23] C.L. Yaws, Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals (Mc-Graw Hill, New York, 1999).
- [24] G. Douhéret, M.I. Davis, J.C.R. Reis, and M.J. Blandamer, Chem. Phys. Chem. 2, 148 (2001).
- [25] G. Douhéret, M.I. Davis, J.C.R. Reis, I.J. Fjellanger, M.B. Vaage, and H. Hoiland, Phys. Chem. Chem. Phys. 4, 6034 (2002).
- [26] G.C. Benson and O. Kiyohara, J. Chem. Thermodyn. 11, 1061 (1979).
- [27] O. Redilch and A.T. Kister, Ing. Eng. Chem. 40, 345 (1948).

Appendix

he	M.
1 T	151
S II	33.
ion	- - - - -
iati	Ē
lev	at
m e	9
Ζ.	spt
les,	Ino
шŋ	np
vol	COI
ar	tic
lon	ma
S D	aro
ces	+
ex	Ξ
s,m,	nes
Ř	kaı
es,	s al
iliti	lte
sib	ixtı
res	Ë
dui	ary
3	bin
pic	he
-	+
tro	JC
sentro	m, of
, isentro	$K_{\mathrm{S,m}}^{\mathrm{E}},$ of
n _D , isentro	es, K ^E _{S,m} , of
ces, n _D , isentro	ilities, $K_{S,m}^E$, of
idices, n _D , isentro	sibilities, $K_{S,m}^E$, of
\dot{n} indices, $n_{\rm D}$, isentro	ressibilities, $K_{\rm S,m}^{\rm E}$, of
tive indices, n _D , isentro	mpressibilities, $K_{S,m}^E$, of
ractive indices, n _D , isentro	compressibilities, $K_{S,m}^E$, of
refractive indices, n _D , isentro	pic compressibilities, $K_{S,m}^E$, of
u , refractive indices, $n_{\rm D}$, isentro	tropic compressibilities, $K_{S,m}^E$, of
id, u , refractive indices, $n_{\rm D}$, isentro	sentropic compressibilities, $K_{S,m}^E$, of
ound, u , refractive indices, $n_{\rm D}$, isentro	ar isentropic compressibilities, $K_{S,m}^E$, of
f sound, u , refractive indices, $n_{\rm D}$, isentro	nolar isentropic compressibilities, $K_{S,m}^E$, of
s of sound, u , refractive indices, $n_{\rm D}$, isentro	is molar isentropic compressibilities, $K_{S,m}^{E}$, of
seds of sound, u, refractive indices, n _D , isentro	ccess molar isentropic compressibilities, $K_{S,m}^E$, of
speeds of sound, u , refractive indices, $n_{\rm D}$, isentro	l excess molar isentropic compressibilities, $K_{S,m}^E$, of
ρ , speeds of sound, <i>u</i> , refractive indices, $n_{\rm D}$, isentro	and excess molar isentropic compressibilities, $K_{S,m}^E$, of
es, ρ , speeds of sound, u , refractive indices, $n_{\rm D}$, isentro	$_{\rm D}$, and excess molar isentropic compressibilities, $K_{\rm S,m}^{\rm E}$, of
sities, ρ , speeds of sound, u , refractive indices, n_D , isentro	$\Delta n_{\rm D}$, and excess molar isentropic compressibilities, $K_{\rm S,m}^{\rm E}$, of
Densities, ρ , speeds of sound, u , refractive indices, $n_{\rm D}$, isentro	lex, Δn_D , and excess molar isentropic compressibilities, $K_{S,m}^E$, of
. Densities, ρ , speeds of sound, u , refractive indices, $n_{\rm D}$, isentro	index, Δn_D , and excess molar isentropic compressibilities, $K_{S,m}^E$, of
A1. Densities, ρ , speeds of sound, u , refractive indices, n_D , isentro	ive index, $\Delta n_{\rm D}$, and excess molar isentropic compressibilities, $K_{\rm S,m}^{\rm E}$, of
de A1. Densities, ρ , speeds of sound, u , refractive indices, n_D , isentro	active index, $\Delta n_{\rm D}$, and excess molar isentropic compressibilities, $K_{\rm S,m}^{\rm E}$, of

x^{1}	$ ho ({ m gcm^{-3}})$	цD	$\binom{u}{(m s^{-1})}$	$K_{\rm S,m}~({ m m}^3{ m TPa}^{-1}{ m mol}^{-1})$	$V^{\rm E}$ $({ m cm}^3{ m mol}^{-1})$	$\Delta n_{ m D}$	$K_{\rm S,m}^{\rm E} \ ({ m m}^3 { m TPa}^{-1} { m mol}^{-1})$
				Hexane (1) + benzene (2)			
0.0000	0.8895	1.50765	1371	0.05255	0.000	0.0000	0.00000
0.0965	0.8583	1.48932	1331	0.06049	0.133	-0.0061	-0.00119
0.2016	0.8276	1.47136	1294	0.06955	0.248	-0.0107	-0.00208
0.3042	0.8004	1.45561	1263	0.07880	0.341	-0.0134	-0.00253
0.4019	0.7770	1.44190	1239	0.08788	0.370	-0.0147	-0.00270
0.5009	0.7550	1.42940	1217	0.09735	0.409	-0.0146	-0.00260
0.5991	0.7351	1.41794	1198	0.10692	0.399	-0.0136	-0.00231
0.6988	0.7165	1.40744	1181	0.11682	0.352	-0.0114	-0.00185
0.8072	0.6980	1.39731	1167	0.12752	0.247	-0.0078	-0.00141
0.9021	0.6829	1.38867	1155	0.13719	0.148	-0.0044	-0.00072
1.0000	0.6685	1.38061	1145	0.14717	0.000	0.0000	0.00000
				Heptane (1) + benzene (2)			
0.0000	0.8895	1.50765	1371	0.05256	0.000	0.0000	0.00000
0.0993	0.8569	1.48831	1331	0.06175	0.245	-0.0080	-0.00013
0.2025	0.8278	1.47083	1299	0.07142	0.415	-0.0136	-0.00016
0.3029	0.8031	1.45643	1274	0.08098	0.526	-0.0165	-0.00004
0.3931	0.7834	1.44482	1256	0.08960	0.573	-0.0178	0.00010
0.5001	0.7630	1.43311	1239	0.09978	0.552	-0.0172	0.00023
0.5929	0.7469	1.42373	1227	0.10863	0.529	-0.0159	0.00036
0.7188	0.7276	1.41273	1214	0.12051	0.417	-0.0125	0.00040
0.8447	0.7104	1.40312	1204	0.13237	0.289	-0.0077	0.00044
0.9034	0.7032	1.39907	1200	0.13767	0.183	-0.0050	0.00022
1.0000	0.6921	1.39297	1195	0.14653	0.000	0.0000	0.00000
				Octane (1) + benzene (2)			
0.0000	0.8895	1.50765	1371	0.05255	0.000	0.0000	0.00000
0.1024	0.8559	1.48744	1332	0.06295	0.299	-0.0095	0.00059
							(continued)

524

x_1	$ ho ({ m gcm^{-3}})$	ΩIJ	$(m s^{-1})$	$K_{\rm S,m}~({ m m}^3{ m TPa}^{-1}{ m mol}^{-1})$	$V^{\rm E}$ (cm ³ mol ⁻¹)	$\Delta n_{ m D}$	$K_{\rm S,m}^{\rm E}~({ m m}^3{ m TPa^{-1}}{ m mol}^{-1})$
0.2013	0.8288	1.47128	1305	0.07298	0.518	-0.0153	0.00113
0.3006	0.8061	1.45773	1285	0.08289	0.623	-0.0184	0.00152
0.4234	0.7822	1.44362	1267	0.09508	0.706	-0.0197	0.00193
0.5001	0.7693	1.43607	1258	0.10260	0.713	-0.0192	0.00211
0.5985	0.7548	1.42775	1250	0.11198	0.644	-0.0172	0.00205
0.6982	0.7418	1.42028	1244	0.12137	0.542	-0.0143	0.00189
0.7972	0.7302	1.41361	1240	0.13047	0.428	-0.0106	0.00150
0.9031	0.7194	1.40751	1236	0.13994	0.217	-0.0056	0.00082
1.0000	0.7105	1.40294	1235	0.14842	0.000	0.0000	0.00000
				Nonane (1) + benzene (2)			
0.0000	0.8895	1.50765	1371	0.05255	0.000	0.0000	0.00000
0.0982	0.8568	1.48780	1335	0.06346	0.362	-0.0103	0.00118
0.1996	0.8298	1.47156	1310	0.07452	0.623	-0.0167	0.00219
0.3040	0.8076	1.45821	1294	0.08544	0.735	-0.0199	0.00274
0.4001	0.7903	1.44781	1284	0.09537	0.813	-0.0209	0.00315
0.4970	0.7757	1.43915	1277	0.10508	0.795	-0.0202	0.00325
0.5995	0.7623	1.43148	1271	0.11516	0.752	-0.0179	0.00316
0.6989	0.7515	1.42509	1269	0.12444	0.582	-0.0146	0.00260
0.7959	0.7419	1.41958	1267	0.13350	0.456	-0.0106	0.00203
0.8928	0.7337	1.41495	1267	0.14216	0.236	-0.0058	0.00110
1.0000	0.7255	1.41037	1267	0.15170	0.000	0.0000	0.00000
				Hexane (1) + toluene (2)			
0.0000	0.8761	1.50278	1371	0.06390	0.000	0.0000	0.00000
0.0830	0.8556	1.49053	1344	0.06931	-0.030	-0.0021	-0.00151
0.1713	0.8345	1.47800	1318	0.07535	-0.048	-0.0039	-0.00282
0.2980	0.8054	1.46058	1283	0.08463	-0.048	-0.0058	-0.00409
0.3960	0.7840	1.44823	1259	0.09217	-0.058	-0.0062	-0.00470
0.5011	0.7619	1.43501	1235	0.10076	-0.055	-0.0066	-0.00487

(continued)

Table A1. Continued.

I

Table A1. Continued.

Downloaded At: 07:26 28 January 2011

(continued)							
0.00000	0.0000	0.000	0.06391	1371	1.50278	0.8761	0.0000
00000	00000	000.0	Nonane $(1) + toluene (2)$	リ レント	F/70F.1	COT 1.0	1.0000
-0.00004	-0.0041	0.054	0.13954	1240	1.40932	0.7220	0.8955
-0.00009	-0.0072	0.124	0.13114	1247	1.41605	0.7336	0.7966
-0.00012	-0.0096	0.172	0.12286	1254	1.42344	0.7460	0.6990
-0.00016	-0.0113	0.212	0.11435	1263	1.43166	0.7598	0.5988
-0.00025	-0.0123	0.225	0.10595	1274	1.44054	0.7746	0.5005
-0.00027	-0.0123	0.226	0.09729	1287	1.45075	0.7914	0.3983
-0.00034	-0.0112	0.199	0.08871	1303	1.46186	0.8097	0.2975
-0.00029	-0.0090	0.166	0.08033	1321	1.47399	0.8296	0.1977
-0.00018	-0.0053	0.098	0.07203	1343	1.48762	0.8517	0.0982
0.00000	0.0000	0.000	0.06391	1371	1.50278	0.8761	0.0000
0.00000	0.0000	0.000	0.14652	1195	1.39297	0.6921	1.0000
-0.00069	-0.0032	0.043	0.13735	1205	1.40104	0.7060	0.8973
-0.00118	-0.0059	0.078	0.12847	1215	1.40952	0.7206	0.7958
-0.00154	-0.0079	0.110	0.11992	1227	1.41841	0.7357	0.6967
-0.00183	-0.0093	0.135	0.11132	1241	1.42801	0.7520	0.5961
-0.00198	-0.0100	0.138	0.10299	1256	1.43822	0.7692	0.4970
-0.00195	-0.0099	0.141	0.09475	1273	1.44925	0.7877	0.3970
-0.00176	-0.0090	0.129	0.08690	1293	1.46084	0.8070	0.2997
-0.00139	-0.0071	0.093	0.07900	1315	1.47375	0.8284	0.1996
-0.00080	-0.0041	0.051	0.07115	1341	1.48800	0.8519	0.0974
0.00000	0.0000	0.000	0.06390	1371	1.50278	0.8761	0.0000
0 0 0 0 0		5 5 5	Hentane $(1) + toluene (2)$				
0.0000	0.0000	0.000	0.14717	1145	1.38061	0.6685	1.0000
-0.00205	-0.0023	-0.027	0.13637	1162	1.39115	0.6868	0.8949
-0.00340	-0.0039	-0.036	0.12674	1178	1.40168	0.7047	0.7955
-0.00415	-0.0055	-0.052	0.11781	1195	1.41209	0.7231	0.6973
-0.00478	-0.0061	-0.058	0.10865	1215	1.42403	0.7430	0.5949
$K_{\mathrm{S,m}}^{\mathrm{E}}$ (m ³ TPa ⁻¹ mol ⁻¹)	Δn_{D}	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa}^{-1} { m mol}^{-1})$	$(m s^{-1})$	Ω_D	$ ho ({ m gcm^{-3}})$	x_1
		$V^{\rm E}$		2			

$\rho(\text{g cm}^{-3}) \qquad n_{\text{D}} \qquad (\text{m s}^{-1}) \qquad 0 \text{ o s c 2A} \qquad 1 \text{ A S T T } \qquad 12AT$	$n_{\rm D}$ $({\rm ms^{-1}})$	$\binom{u}{(\text{m s}^{-1})}$		$K_{\rm S,m}$ (m ³ TPa ⁻¹ mol ⁻¹)	$V^{\rm E}$ (cm ³ mol ⁻¹)	Δn _D 0.0061	$K_{\rm S,m}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)
0.8324 1.48/// 1.54/ 0.8313 1.47464 1328	1.47464 1.328	134/ 1328		0.08141	0.117	-0.000102	0.00045
0.8121 1.46273 1312	1.46273 1312	1312		0.09054	0.276	-0.0128	0.00072
0.7955 1.45242 1300	1.45242 1300	1300		0.09946	0.293	-0.0138	0.00085
0.7807 1.44343 1291	1.44343 1291	1291		0.10830	0.293	-0.0136	0.00090
0.7678 1.43561 1284	1.43561 1284	1284		0.11683	0.264	-0.0124	0.00087
0.7557 1.42831 1278	1.42831 1278	1278		0.12562	0.226	-0.0103	0.00079
0.7449 1.42196 1274	1.42196 1274	1274		0.13422	0.162	-0.0075	0.00061
0.7350 1.41598 1270	1.41598 1270	1270		0.14279	0.081	-0.0041	0.00034
0.7255 1.41037 1267	1.41037 1267	1267		0.15170	0.000	0.0000	0.0000
				Hexane (1) + ethylbenzene (2	(1		
0.8757 1.50129 1382	1.50129 1382	1382		0.07246	0.000	0.0000	0.0000
0.8564 1.48985 1356	1.48985 1356	1356		0.07734	-0.070	-0.0005	-0.00186
0.8377 1.47880 1332	1.47880 1332	1332		0.08240	-0.103	-0.0011	-0.00333
0.8186 1.46781 1308	1.46781 1308	1308		0.08791	-0.129	-0.0012	-0.00453
0.7953 1.45411 1280	1.45411 1280	1280		0.09518	-0.137	-0.0016	-0.00550
0.7713 1.44021 1252	1.44021 1252	1252		0.10321	-0.153	-0.0016	-0.00609
0.7507 1.42837 1229	1.42837 1229	1229		0.11075	-0.151	-0.0014	-0.00600
0.7299 1.41635 1207	1.41635 1207	1207		0.11891	-0.140	-0.0011	-0.00545
0.7093 1.40426 1186	1.40426 1186	1186		0.12756	-0.122	-0.0009	-0.00441
0.6896 1.39289 1166	1.39289 1166	1166		0.13663	-0.065	-0.0005	-0.00263
0.6685 1.38061 1145	1.38061 1145	1145		0.14717	0.000	0.0000	0.0000
H	H	H	Ξ	[eptane (1) + ethylbenzene (2)	2)		
0.8757 1.50129 1382	1.50129 1382	1382		0.07246	0.000	0.0000	0.0000
0.8543 1.48845 1356	1.48845 1356	1356		0.07868	0.022	-0.0021	-0.00109
0.8331 1.47577 1331	1.47577 1331	1331		0.08531	0.035	-0.0038	-0.00201
0.8132 1.46411 1309	1.46411 1309	1309		0.09212	0.050	-0.0047	-0.00257
0.7941 1.45281 1288	1.45281 1288	1288		0.09914	0.063	-0.0053	-0.00288
0.7754 1.44161 1269	1.44161 1269	1269		0.10651	0.061	-0.0055	-0.00299
0.7576 1.43125 1252	1.43125 1252	1252		0.11400	0.056	-0.0051	-0.00288

Table A1. Continued.

Downloaded At: 07:26 28 January 2011

(continued)

527

			12		$V^{\rm E}$		
x_1	$ ho({ m gcm^{-3}})$	ЧD	$(m s^{-1})$	$K_{\rm S,m}~({\rm m}^3{ m TPa}^{-1}{ m mol}^{-1})$	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	Δn_{D}	$K_{\rm S,m}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)
0.6998	0.7404	1.42106	1236	0.12173	0.041	-0.0044	-0.00256
0.7973	0.7242	1.41161	1222	0.12950	0.025	-0.0033	-0.00201
0.8979	0.7080	1.40216	1208	0.13774	0.012	-0.0019	-0.00122
1.0000	0.6921	1.39297	1195	0.14653	0.000	0.0000	0.00000
				Octane (1) + ethylbenzene (2)			
0.0000	0.8757	1.50129	1382	0.07246	0.000	0.0000	0.00000
0.1007	0.8538	1.48798	1357	0.07967	0.078	-0.0034	-0.00044
0.2000	0.8338	1.47585	1336	0.08686	0.120	-0.0058	-0.00078
0.3013	0.8146	1.46431	1317	0.09436	0.164	-0.0074	-0.00098
0.3978	0.7976	1.45413	1301	0.10156	0.164	-0.0080	-0.00112
0.5019	0.7803	1.44377	1286	0.10945	0.164	-0.0082	-0.00113
0.5991	0.7651	1.43468	1273	0.11693	0.152	-0.0077	-0.00103
0.7000	0.7503	1.42593	1262	0.12471	0.109	-0.0065	-0.0001
0.7982	0.7366	1.41785	1252	0.13238	0.073	-0.0049	-0.00070
0.8956	0.7237	1.41029	1243	0.14002	0.032	-0.0029	-0.00046
1.0000	0.7105	1.40294	1235	0.14841	0.000	0.0000	0.00000
				Nonane (1) + ethylbenzene (2)			
0.0000	0.8757	1.50129	1382	0.07246	0.000	0.0000	0.00000
0.0966	0.8547	1.48834	1360	0.08014	0.110	-0.0042	0.00003
0.1946	0.8354	1.47649	1342	0.08793	0.186	-0.0071	0.00005
0.2965	0.8172	1.46542	1326	0.09601	0.224	-0.0089	0.00006
0.3964	0.8008	1.45543	1313	0.10400	0.256	-0.0098	0.00013
0.4972	0.7856	1.44619	1302	0.11203	0.266	-0.0099	0.00017
0.5973	0.7718	1.43792	1292	0.11999	0.238	-0.0091	0.00020
0.6959	0.7592	1.43039	1284	0.12780	0.198	-0.0076	0.00020
0.7957	0.7473	1.42324	1278	0.13570	0.152	-0.0057	0.00019
0.8960	0.7362	1.41652	1272	0.14357	0.087	-0.0033	0.00011
1.0000	0.7255	1.41037	1267	0.15170	0.000	0.0000	0.0000

Table A1. Continued.

Downloaded At: 07:26 28 January 2011

Ч
201
January
28
07:26
At:
Downloaded

Table A2. Densities, ρ , speeds of sound, u, refractive indices, n_D , isentropic compressibilities, $K_{s,m}$, excess molar volumes, V_m^E , deviations in the refractive index, Δn_D , and excess molar isentropic compressibilities, $K_{S,m}^E$, of the binary mixtures alkanes (1) + aromatic compounds (2) at T = 298.15 K.

x_1	$ ho ({ m gcm^{-3}})$	пD	$u ({\rm ms^{-1}})$	$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa}^{-1} { m mol}^{-1})$	$V^{\rm E}$ (cm ³ mol ⁻¹)	$\Delta n_{ m D}$	$K_{\rm S,m}^{\rm E}$ (m ³ TPa ⁻¹ mol ⁻¹)
				Hexane (1) + benzene (2)			
0.0000	0.8736	1.49774	1299	0.06063	0.000	0.0000	0.00000
0.0965	0.8428	1.47980	1261	0.06982	0.127	-0.0058	-0.00164
0.2016	0.8124	1.46211	1225	0.08045	0.247	-0.0104	-0.00281
0.3042	0.7856	1.44667	1195	0.09134	0.329	-0.0129	-0.00344
0.4019	0.7624	1.43294	1171	0.10207	0.367	-0.0144	-0.00369
0.5009	0.7408	1.42051	1150	0.11327	0.386	-0.0144	-0.00361
0.5991	0.7212	1.40908	1131	0.12465	0.365	-0.0135	-0.00325
0.6988	0.7027	1.39867	1115	0.13651	0.337	-0.0114	-0.00258
0.8072	0.6844	1.38832	1100	0.14932	0.236	-0.0082	-0.00195
0.9021	0.6694	1.38018	1088	0.16102	0.152	-0.0044	-0.0001
1.0000	0.6552	1.37234	1077	0.17292	0.000	0.0000	0.00000
				Heptane (1) + benzene (2)			
0.0000	0.8736	1.49774	1299	0.06064	0.000	0.0000	0.00000
0.0993	0.8417	1.47866	1262	0.07116	0.234	-0.0079	-0.00031
0.2025	0.8131	1.46181	1232	0.08237	0.405	-0.0131	-0.00037
0.3029	0.7888	1.44716	1208	0.09343	0.520	-0.0165	-0.00026
0.3931	0.7695	1.43612	1190	0.10347	0.557	-0.0174	-0.00007
0.5001	0.7493	1.42437	1174	0.11531	0.558	-0.0171	0.00009
0.5929	0.7335	1.41540	1162	0.12564	0.530	-0.0156	0.00029
0.7188	0.7144	1.40412	1149	0.13955	0.441	-0.0127	0.00046
0.8447	0.6975	1.39500	1139	0.15333	0.310	-0.0076	0.00049
0.9034	0.6904	1.39110	1135	0.15961	0.209	-0.0049	0.00037
1.0000	0.6796	1.38515	1130	0.16979	0.000	0.0000	0.00000
				Octane (1) + benzene (2)			
0.0000	0.8736	1.49774	1299	0.06063	0.000	0.0000	0.00000
0.1024	0.8408	1.47808	1264	0.07244	0.301	-0.0092	0.00057
0.2013	0.8144	1.46231	1239	0.08392	0.511	-0.0148	0.00119

Physics and Chemistry of Liquids

(continued)

Ξ.
0
\sim
January
28
7:26
0
At:
.oaded
Downl

Table A2. Continued.

530

$K^{\mathrm{E}}_{\mathrm{S,m}}$ (m ³ TPa ⁻¹ mol ⁻¹)	0.00164	0.00214	0.00216	0.00220	0.00198	0.00152	0.00081	0.00000		0.00000	0.00130	0.00240	0.00316	0.00366	0.00391	0.00365	0.00313	0.00250	0.00150	0.00000		0.00000	-0.00203	-0.00373	-0.00545	-0.00622	-0.00658	-0.00630	-0.00556	-0.00421	(continued)
Δn_{D}	-0.0178	-0.0190	-0.0185	-0.0167	-0.0138	-0.0101	-0.0050	0.0000		0.0000	-0.0099	-0.0161	-0.0193	-0.0201	-0.0194	-0.0173	-0.0140	-0.0102	-0.0057	0.0000		0.0000	-0.0020	-0.0038	-0.0055	-0.0063	-0.0065	-0.0061	-0.0053	-0.0040	
$V^{\rm E}$ (cm ³ mol ⁻¹)	0.618	0.690	0.660	0.643	0.535	0.409	0.222	0.000		0.000	0.357	0.598	0.722	0.793	0.787	0.713	0.575	0.457	0.260	0.000		0.000	-0.032	-0.065	-0.078	-0.082	-0.101	-0.095	-0.075	-0.045	
$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa^{-1}} { m mol}^{-1})$	0.09528	0.10925	0.11770	0.12854	0.13926	0.14967	0.16058	0.17042	Nonane (1) + benzene (2)	0.06063	0.07294	0.08539	0.09786	0.10913	0.12024	0.13147	0.14208	0.15233	0.16219	0.17270	Hexane $(1) + $ toluene (2)	0.07282	0.07911	0.08624	0.09720	0.10624	0.11640	0.12607	0.13706	0.14830	
u (m s ⁻¹)	1220	1203	1195	1187	1181	1177	1174	1172		1299	1267	1245	1230	1220	1213	1209	1207	1206	1206	1207		1305	1279	1252	1218	1193	1169	1149	1129	1111	
ЧD	1.44907	1.43535	1.42799	1.41963	1.41233	1.40592	1.40013	1.39519		1.49774	1.47852	1.46275	1.44977	1.43984	1.43137	1.42384	1.41767	1.41234	1.40774	1.40326		1.49399	1.48187	1.46930	1.45222	1.43954	1.42652	1.41548	1.40389	1.39315	
$\rho(\mathrm{gcm^{-3}})$	0.7922	0.7689	0.7565	0.7420	0.7293	0.7180	0.7073	0.6986		0.8736	0.8419	0.8158	0.7941	0.7773	0.7630	0.7501	0.7394	0.7300	0.7219	0.7140		0.8622	0.8417	0.8207	0.7917	0.7703	0.7484	0.7295	0.7096	0.6911	
x_1	0.3006	0.4234	0.5001	0.5985	0.6982	0.7972	0.9031	1.0000		0.0000	0.0982	0.1996	0.3040	0.4001	0.4970	0.5995	0.6989	0.7959	0.8928	1.0000		0.0000	0.0830	0.1713	0.2980	0.3960	0.5011	0.5949	0.6973	0.7961	

B. González et al.

$K_{\rm S,m}^{\rm E}~({\rm m}^3{ m TPa}^{-1}{ m mol}^{-1})$	-0.00242	0.00000		0.00000	-0.00109	-0.00189	-0.00234	-0.00256	-0.00258	-0.00237	-0.00200	-0.00149	-0.00073	0.00000		0.00000	-0.00036	-0.00056	-0.00063	-0.00062	-0.00053	-0.00044	-0.00032	-0.00019	-0.00022	0.00000		0.00000	0.00026
Δn_{D}	-0.0023	0.0000		0.0000	-0.0039	-0.0070	-0.0089	-0.0098	-0.0098	-0.0091	-0.0078	-0.0055	-0.0031	0.0000		0.0000	-0.0051	-0.0088	-0.0111	-0.0120	-0.0118	-0.0110	-0.0091	-0.0068	-0.0036	0.0000		0.0000	-0.0060
$V^{\rm E}$ (cm ³ mol ⁻¹)	-0.022	0.000		0.000	0.058	0.093	0.137	0.156	0.161	0.149	0.131	0.105	0.079	0.000		0.000	0.097	0.160	0.198	0.212	0.228	0.212	0.185	0.148	0.066	0.000		0.000	0.143
$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa}^{-1} { m mol}^{-1})$	0.15995	0.17292	Heptane $(1) + Toluene (2)$	0.07282	0.08117	0.09028	0.09953	0.10875	0.11843	0.12824	0.13837	0.14849	0.15909	0.16977	Octane $(1) + $ toluene (2)	0.07283	0.08206	0.09156	0.10123	0.11108	0.12114	0.13082	0.14072	0.15037	0.16000	0.17042	Nonane $(1) + $ toluene (2)	0.07283	0.08267
$u ({\rm ms^{-1}})$	1094	1077		1305	1277	1251	1228	1209	1192	1177	1163	1151	1140	1130		1305	1279	1258	1240	1224	1211	1201	1192	1184	1178	1172		1305	1282
ΠU	1.38291	1.37234		1.49399	1.47947	1.46531	1.45252	1.44101	1.43007	1.41996	1.41041	1.40183	1.39323	1.38515		1.49399	1.47915	1.46569	1.45348	1.44262	1.43269	1.42382	1.41583	1.40848	1.40187	1.39519		1.49399	1.47933
$ ho ({ m gcm^{-3}})$	0.6734	0.6552		0.8622	0.8381	0.8148	0.7935	0.7743	0.7559	0.7389	0.7227	0.7077	0.6932	0.6796		0.8622	0.8381	0.8163	0.7966	0.7786	0.7619	0.7473	0.7336	0.7213	0.7099	0.6986		0.8622	0.8387
x_1	0.8946	1.0000		0.0000	0.0974	0.1996	0.2997	0.3970	0.4970	0.5961	0.6967	0.7958	0.8973	1.0000		0.0000	0.0982	0.1977	0.2975	0.3983	0.5005	0.5988	0.6990	0.7966	0.8955	1.0000		0.0000	0.0960

Physics and Chemistry of Liquids

531

(continued)

Table A2. Continued.

-
Η
0
\sim
January
28
: 26
07
At:
oaded
Downl

Table A2. Continued.

532

$K^{\rm E}_{{ m S},{ m m}}~({ m m}^3{ m TPa}^{-1}{ m mol}^{-1})$	0.00053	0.00082	0.00101	0.00114	0.00124	0.00106	0.00081	0.00049	0.0000		0.0000	-0.00249	-0.00440	-0.00601	-0.00733	-0.00800	-0.00797	-0.00713	-0.00587	-0.00338	0.00000		0.0000	-0.00151	-0.00260	-0.00340	-0.00384	-0.00397	-0.00384	-0.00342	(continued)
Δn_{D}	-0.0101	-0.0125	-0.0135	-0.0134	-0.0122	-0.0101	-0.0074	-0.0040	0.0000		0.0000	-0.0004	-0.0009	-0.0012	-0.0014	-0.0017	-0.0014	-0.0014	-0.0008	-0.0005	0.0000		0.0000	-0.0020	-0.0036	-0.0046	-0.0053	-0.0053	-0.0047	-0.0043	
$V^{\rm E}$ (cm ³ mol ⁻¹)	0.232	0.316	0.347	0.358	0.334	0.276	0.208	0.117	0.000		0.000	-0.068	-0.099	-0.135	-0.153	-0.157	-0.155	-0.141	-0.106	-0.063	0.000	2)	0.000	0.016	0.050	0.056	0.063	0.072	0.063	0.046	
$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa^{-1}} { m mol}^{-1})$	0.09276	0.10313	0.11333	0.12345	0.13329	0.14320	0.15293	0.16268	0.17270	Hexane (1) + ethylbenzene (2)	0.08210	0.08782	0.09383	0.10038	0.10907	0.11888	0.12797	0.13806	0.14874	0.15993	0.17292	Heptane (1) + ethylbenzene (2)	0.08209	0.08924	0.09709	0.10501	0.11325	0.12198	0.13085	0.14004	
<i>u</i> (m s ⁻¹)	1264	1249	1238	1229	1222	1216	1212	1209	1207		1318	1293	1269	1245	1216	1188	1165	1141	1120	1099	1077		1318	1293	1268	1246	1226	1206	1189	1173	
пD	1.46623	1.45466	1.44463	1.43568	1.42803	1.42090	1.41455	1.40884	1.40326		1.49304	1.48173	1.47068	1.45955	1.44600	1.43186	1.42012	1.40781	1.39590	1.38460	1.37234		1.49304	1.48043	1.46779	1.45608	1.44469	1.43374	1.42359	1.41328	
$ ho ({ m gcm^{-3}})$	0.8179	0.7990	0.7826	0.7680	0.7553	0.7435	0.7329	0.7232	0.7140		0.8625	0.8431	0.8243	0.8052	0.7819	0.7578	0.7372	0.7164	0.6954	0.6762	0.6552		0.8625	0.8412	0.8199	0.8001	0.7811	0.7624	0.7447	0.7276	
x_1	0.1942	0.2952	0.3954	0.4954	0.5929	0.6939	0.7939	0.8947	1.0000		0.0000	0.0903	0.1776	0.2675	0.3777	0.4931	0.5929	0.6947	0.7984	0.8942	1.0000		0.0000	0.0987	0.2007	0.3001	0.3991	0.5001	0.5998	0.6998	

B. González et al.

<i>x</i> ₁	$\rho(\mathrm{gcm^{-3}})$	ЧD	u (m s ⁻¹)	$K_{\rm S,m} \ ({\rm m}^3 {\rm TPa}^{-1} {\rm mol}^{-1})$	$V^{\rm E} ({ m cm}^3 { m mol}^{-1})$	Δn_{D}	$K_{\rm S,m}^{\rm E}~({\rm m}^{3}{\rm TPa^{-1}mol^{-1}})$
0.7973	0.7115 0.6954	1.40383 1.39442	1158 1144	0.14940 0.15926	0.026	-0.0032 -0.0017	-0.00261 -0.00157
1.0000	0.6796	1.38515	1130	0.16979	0.000	0.0000	0.0000
				Octane (1) + ethylbenzene	(2)		
0.0000	0.8625	1.49304	1318	0.08210	0.000	0.0000	0.00000
0.1007	0.8407	1.47997	1295	0.09030	0.086	-0.0032	-0.00070
0.2000	0.8208	1.46790	1274	0.09858	0.135	-0.0056	-0.00118
0.3013	0.8018	1.45647	1255	0.10723	0.170	-0.0071	-0.00148
0.3978	0.7849	1.44636	1239	0.11557	0.176	-0.0077	-0.00167
0.5019	0.7678	1.43607	1224	0.12472	0.165	-0.0079	-0.00172
0.5991	0.7527	1.42704	1212	0.13342	0.158	-0.0074	-0.00160
0.7000	0.7380	1.41826	1200	0.14247	0.119	-0.0063	-0.00145
0.7982	0.7244	1.41034	1190	0.15147	0.087	-0.0046	-0.00113
0.8956	0.7116	1.40285	1181	0.16047	0.050	-0.0026	-0.00074
1.0000	0.6986	1.39519	1172	0.17043	0.000	0.0000	0.0000
				Nonane (1) + ethylbenzene	s (2)		
0.0000	0.8625	1.49304	1318	0.08210	0.000	0.0000	0.00000
0.0966	0.8417	1.48039	1298	0.09073	0.120	-0.0040	-0.00012
0.1946	0.8226	1.46859	1280	0.09961	0.198	-0.0070	-0.00011
0.2965	0.8046	1.45768	1264	0.10886	0.237	-0.0087	-0.00010
0.3964	0.7884	1.44787	1252	0.11803	0.265	-0.0096	0.00002
0.4972	0.7733	1.43873	1241	0.12726	0.290	-0.0097	0.00011
0.5973	0.7596	1.43053	1232	0.13638	0.274	-0.0089	0.00016
0.6959	0.7471	1.42289	1224	0.14539	0.244	-0.0077	0.00024
0.7957	0.7354	1.41594	1217	0.15458	0.185	-0.0057	0.00039
0.8960	0.7245	1.40955	1211	0.16352	0.103	-0.0030	0.00023
1.0000	0.7140	1.40326	1207	0.17271	0.000	0.0000	0.00000

Downloaded At: 07:26 28 January 2011

Table A2. Continued.